In mathematics, in particular in differential geometry, mathematical physics, and representation theory a Weitzenböck identity (named after Roland Weitzenböck) expresses a relationship between two second-order elliptic operators on a manifold with the same leading symbol. Usually Weitzenböck formulae are implemented for G-invariant self-adjoint operators between vector bundles associated to some principal G-bundle, although the precise conditions under which such a formula exists are difficult to formulate. Instead of attempting to be completely general, then, this article presents three examples of Weitzenböck identities: from Riemannian geometry, spin geometry, and complex analysis.
Contents |
In Riemannian geometry there are two notions of the Laplacian on differential forms over an oriented compact Riemannian manifold M. The first definition uses the divergence operator δ defined as the formal adjoint of the de Rham operator d:
where α is any p-form and β is any (p+1)-form, and is the metric induced on the bundle of (p+1)-forms. The usual form Laplacian is then given by
On the other hand, the Levi-Civita connection supplies a differential operator
where ΩpM is the bundle of p-forms and T*M is the cotangent bundle of M. The Bochner Laplacian is given by
where is the adjoint of .
The Weitzenböck formula then asserts that
where A is a linear operator of order zero involving only the curvature.
The precise form of A is given, up to an overall sign depending on curvature conventions, by
where
If M is an oriented spin manifold with Dirac operator ð, then one may form the spin Laplacian Δ = ð2 on the spin bundle. On the other hand, the Levi-Civita connection extends to the spin bundle to yield a differential operator
As in the case of Riemannian manifolds, let . This is another self-adjoint operator and, moreover, has the same leading symbol as the spin Laplacian. The Weitzenböck formula yields:
where Sc is the scalar curvature. This result is also known as the Lichnerowicz formula.
If M is a compact Kähler manifold, there is a Weitzenböck formula relating the -Laplacian (see Dolbeault complex) and the Euclidean Laplacian on (p,q)-forms. Specifically, let
According to the Weitzenböck formula, if α ε Ω(p,q)M, then
where A is an operator of order zero involving the curvature. Specifically, if